Download Model DTC-500_1972
Transcript
User’s Manual Model DTC-500 Cryogenic Termperature Indicator/Controller Obsolete Notice: This manual describes an obsolete Lake Shore product. This manual is a copy from our archives and may not exactly match your instrument. Lake Shore assumes no responsibilityfor this manual matching your exact hardware revision or operational procedures. Lake Shore is not responsible for any repairs made to the instrument based on information from this manual. Lake Shore Cryotronics, Inc. 575 McCorkle Blvd. Westerville, Ohio 43082-8888USA Internet Addresses: sales@lakeshore.com service@lakeshore.com Visit Our Website: www.lakeshore.com Fax: (614)891-1392 Telephone: (614)891-2243 Methods and apparatus disclosed and described herein have been developed solely on company funds of Lake Shore Cryotronics, Inc. No government or other contractual support or relationship whatsoever has existed which in any way affects or mitigates proprietary rights of Lake Shore Cryotronics, Inc. in these developments. Methods and apparatus disclosed herein may be subject to U S . Patents existing or applied for. Lake Shore Cryotronics, Inc. reserves the right to add, improve, modify, or withdraw functions, design modifications, or products at any time without notice. Lake Shore shall not be liable for errors contained herein or for incidental or consequential damages in connection with furnishing, performance, or use of this material. Obsolete Manual 1972 Table o f Contents Section I. II. General Information 1.1 I n t r o d u c t i o n 1.2 Description 1 . 3 General S p e c i f i c a t i o n s 1.4 Major Assemblies Supplied 1.5 Accessory Equipment and Custom Options 1 1 2 3 3 Installation Introduction 2.2 I n i t i a l I n s p e c t i o n 2 . 3 Power Requirements 2 . 4 Grounding Requirements 2.5 Installation 2.6 Repackaging f o r Shipment 5 5 5 5 7 7 2.1 III. IV. V. VI. Page Operation I n s t r u c t i o n s 3.1 I n t r o d u c t i o n 3.2 C o n t r o l s , I n d i c a t o r s and Connectors 3.3 I n i t i a l Checks 3.4 Temperature Readout Mode 3.5 Constant Temperature Control Mode 3.6 Manual Reset Heating Mode 3 . 7 Temperature Readout Mode (Sensor B) 3.8 Remote Temperature Programming 3.9 Grounding Theory o f Operation 4.1 Introduction 4.2 Detailed Description ( a ) Regulated Power Supplied (b) Diode Constant Current Supply ( c ) S e t P o i n t Voltage Supply and Divider (d) V a r i a b l e Gain Amplifier (e) Automatic Reset C i r c u i t , Bounding C i r c u i t ( f ) Output Power Amplifier (g) Manual Heater Current Control (h) Heater Current Metering and Limiting 9 9 13 13 16 17 17 18 21 22 22 25 25 25 26 27 27 27 28 Maintenance and Trouble Shooting 5.1 I n t r o d u c t i o n 5.2 T e s t Equipment and Accessories 5 . 3 General Remarks 5.4 S e r v i c i n g P r i n t e d C i r c u i t Boards 5.5 O p e r a t i o n a l Checks 5.6 Normal O p e r a t i n g Voltages and Gains 5 . 7 C a l i b r a t i o n o f S e t Point Voltage 5 . 8 C a l i b r a t i o n o f Sensor Current 5.9 Parts List, P r i n t e d C i r c u i t Board Component Locator and Schematic 29 29 29 30 30 31 32 32 Appendixes 40 33 i iv SECTION I General I n formation 1.1 I n t r o d u c t i o n T h i s s e c t i o n c o n t a i n s a d e s c r i p t i o n of t h e Model DTC-500 Cryogenic Temperature C o n t r o l l e r , i t s a p p l i c a t i o n s , g e n e r a l s p e c i f i c a t i o n s , major assemblies s u p p l i e d and a c c e s s o r y equipment a v a i l a b l e . 1.2 D e s c r i p t i o n and A p p l i c a t i o n s The Model DTC-500 Cryogenic Temperature C o n t r o l l e r i s housed i n an aluminum case w i t h s t a n d a r d 19" r e l a y p a n e l f r o n t f o r rack mounting. A l l connections are a t t h e rear o f t h e case w i t h a l l normal o p e r a t i n g c o n t r o l s on t h e f r o n t p a n e l . The i n s t r u m e n t is l i n e o p e r a t e d from e i t h e r 115 v o l t o r 230 v o l t mains, 50 o r 60 h e r t z . The c o n t r o l l e r i s designed t o accept a v o l t a g e signal from a t e m p e r a t u r e s e n s i t i v e t r a n s d u c e r ( g e n e r a l l y a DT-500 o r TG-100 Diode which i s n o t s u p p l i e d ) , compare t h i s s i g n a l w i t h an i n t e r n a l s e t p o i n t v o l t a g e , amplify and p r o c e s s t h e i r d i f f e r e n c e ( e r r o r s i g n a l ) , and d r i v e an e x t e r n a l h e a t i n g element. An i n t e r n a l p r e c i s i o n 10 microampere c o n s t a n t c u r r e n t s o u r c e i s provided t o e x c i t e t h e temperature transducer. The e r r o r p r o c e s s i n g s e c t i o n o f t h e c o n t r o l l e r i s o f t h e p r o p o r t i o n a l p l u s i n t e g r a l mode d e s i g n . Generous a m p l i f i e r g a i n ranges have been provided t o a f f e c t r a p i d c l o s e d loop response times, low s t e a d y s t a t e t e m p e r a t u r e o f f s e t s and t o i n s u r e system s t a b i l i t y o v e r a wide range o f thermal system parameters. The o u t p u t power a m p l i f i e r i s c a p a b l e of s u p p l y i n g up t o 10 Watts o f h e a t e r power. In view o f t h e h i g h c o s t o f some c r y o g e n i c f l u i d s such as helium, c o s t consciousness s u g g e s t s t h a t c r y o s t a t d e s i g n and o p e r a t i n g s t r a t e g i e s b e planned t o limit h e a t e r power requirements t o s u b s t a n t i a l l y less t h a n Power boosters are a v a i l a b l e from t h e company as a c c e s s o r y t e n watts. equipment i f r e q u i r e d f o r s p e c i a l a p p l i c a t i o n s . The p r i n c i p a l i n t e n d e d a p p l i c a t i o n of t h e DTC-500 C o n t r o l l e r i s as a constant temperature r e g u l a t o r f o r laboratory size c r y o s t a t s . I t s b a s i c d e s i g n , however, e n a b l e s i t t o be used as a g e n e r a l purpose c o n t r o l l e r f o r s e n s o r s whose raw o u t p u t s range between 0 and 3 . 0 v o l t s and whose i n c r e m e n t a l s e n s i t i v i t i e s are i n t h e range o f t e n t h s of m i l l i v o l t s . I n a d d i t i o n t o i t s u s e as a c l o s e d loop automatic temperature c o n t r o l l e r , t h e Model DTC-500 C o n t r o l l e r may b e used as a p r e c i s i o n thermometer. By a d j u s t i n g t h e s e t p o i n t v o l t a g e s o t h a t t h e e r r o r s i g n a l i s z e r o , t h e output v o l t a g e o f t h e t e m p e r a t u r e s e n s o r i s a c c u r a t e l y o b t a i n e d . Reference t o a v o l t a g e v e r s u s t e m p e r a t u r e c a l i b r a t i o n curve f o r t h e t r a n s d u c e r i n use w i l l t h e n give i t s temperature. 1 1.3 General S p e c i f i c a t i o n s The f o l l o w i n g s p e c i f i c a t i o n s f o r t h e DTC-500 C o n t r o l l e r a r e a p p l i c a b l e when used with t h e TG-100 o r DT-500 f u l l range t e m p e r a t u r e s e n s i t i v e d i o d e . General : Sensor - Sensor I n p u t - f o u r terminal connection, c o n s t a n t current, potentiometric 10 microamperes I n p u t Line Voltage - 115V o r 220V, 50-60 Hz Power Consumption - 30VA C i r c u i t Design - Solid S t a t e Weight - 15 pounds Dimensions - 5¼" C o n t r o l l e r Range Heater Output S e n s o r Current 1°K t o 400°K nominal 10-3 t o 10 watts, 0-1 Amp, 0-10 Volts Models TG-100 o r DT-500, t e m p e r a t u r e s e n s i t i v e diodes, single-ended o r f l o a t i n g model h i g h , 19" wide, 11½ deep, r a c k mounting - 3 Amps/millivolt i n t o 10 ohm r e s i s t o r a t maximum s e t t i n g Set Points - 0 t o 3.0 v o l t s Switch - 1 v o l t p e r s t e p , 100 mV p e r s t e p , and 10 t u r n i n t e r p o l a t i n g p o t e n t i o m e t e r with 0.1 mV g r a d u a t i o n s , 0.1% l i n e a r i t y Repeatability - ±10 m i c r o v o l t s (0.01°K o r b e t t e r ) Automatic Reset - 3 t o 100 second v a r i a b l e time constant, o r off Gain Temperature Control : 2 Manual Output Control Range - 10 t u r n p o t e n t i o m e t e r c o n t r o l , 0 t o f u l l range c u r r e n t He ate r Current Ranges Heater Resistance f o r Max Power C o n t r o l l e r P r o p o r t i o n a l Gain - 10 mA, 30mA, 100M, 300mA, 1 A - 10 Ohms 3 Amps/mV i n automatic mode (nominal) Temperature Readout : ( 2 Sensor connections, f r o n t p a n e l s e l e c t a b l e between c o n t r o l s e n s o r and temperature s e n s i n g only s e n s o r ) Accuracy - E x c i t a t i o n Current - E x c i t a t i o n Current Regulation Sensor C a l i b r a t i o n Chart 1.4 - e q u i v a l e n t t o 100 m i c r o v o l t s (0.1°K worse c a s e ) ± c a l i b r a t i o n e r r o r o f sensor 10 microamperes 0.05% must b e s u p p l i e d by manufacturer of s e n s o r i n use. Major Assemblies Supplied The Model DTC-500 Cryogenic Temperature C o n t r o l l e r i n c l u d e s as s t a n d a r d equipment, i n a d d i t i o n t o t h e c o n t r o l l e r p r o p e r , t h e f o l l o w i n g a d d i t i o n a l components : (1) 1, Operating and S e r v i c e Manual (2) 2 , Five p i n p l u g s f o r temperature s e n s o r c a b l e s (3) 1, Seven p i n p l u g f o r remote set p o i n t c a b l e Temperature s e n s i t i v e diodes are n o t s u p p l i e d as p a r t o f t h e DTC-500 C o n t r o l l e r . 1.5 Accessory Equipment and Custom Options A v a i l a b l e The following accessory equipment and custom o p t i o n s are a v a i l a b l e from t h e f a c t o r y . Items marked w i t h an a s t e r i s k (*) are of a custom n a t u r e . The customer should d i s c u s s t h e s e items w i t h a f a c t o r y r e p r e s e n t a t i v e b e f o r e ordering. (1) E x t r a 5 and 7 p i n connectors. 3 (2) M u l t i s e n s o r s e l e c t o r p a n e l . ( S p e c i a l low thermal o f f s e t s w i t c h and c a b l i n g f o r s e l e c t i n g among m u l t i p l e s e n s o r s ) * (3) Remote set p o i n t v o l t a g e c o n t r o l and programming module.* (4) Custom m o d i f i c a t i o n of s e n s o r c u r r e n t supply v a l u e . * (5) TG-100 Gallium Arsenide o r DT-500 Temperature S e n s i t i v e Diode ( U n c a l i b r a t e d ) . (See d a t a s h e e t s a t end of t h i s manual f o r nominal o p e r a t i n g c h a r a c t e r i s t i c s and c a s e s t y l e s a v a i l a b l e . ) (6) TG-100 Gallium Arsenide o r DT-500 Temperature S e n s i t i v e Diode, ( C a l i b r a t e d ) S t a n d a r d s laboratory calibration service f o r c o r r e l a t i n g diode o u t p u t v o l t a g e w i t h d i o d e temperature. See sensors d a t a s h e e t f o r a d d i t i o n a l information. (7) Power B o o s t e r s f o r h e a t e r power requirements i n e x c e s s of t e n watts, o r o t h e r t h a n t e n ohm h e a t e r r e s i s t a n c e s . 4 SECTION I I Installation 2.1 Introduction This s e c t i o n c o n t a i n s information and i n s t r u c t i o n s n e c e s s a r y f o r t h e i n s t a l l a t i o n and s h i p p i n g o f t h e Model DTC-500 Cryogenic Temperature C o n t r o l l e r . Included are i n i t i a l i n s p e c t i o n i n s t r u c t i o n s , power and groundi n g requirements, i n s t a l l a t i o n information and i n s t r u c t i o n s f o r repackaging f o r shipment. 2.2 I n i t i a l Inspection T h i s instrument was e l e c t r i c a l l y and mechanically i n s p e c t e d p r i o r t o shipment, I t should b e free from mars and s c r a t c h e s , and i n p e r f e c t working o r d e r upon r e c e i p t . To confirm t h i s , t h e instrument should be i n s p e c t e d v i s u a l l y f o r obvious damage upon r e c e i p t and t e s t e d e l e c t r i c a l l y by use t o d e t e c t any concealed damage. Be s u r e t o i n v e n t o r y a l l components s u p p l i e d b e f o r e d i s c a r d i n g any s h i p p i n g m a t e r i a l s . I f t h e r e i s damage t o t h e i n s t r u ment i n t r a n s i t , be s u r e t o f i l e a p p r o p r i a t e claims with t h e c a r r i e r , and/or i n s u r a n c e company. Please a d v i s e t h e company of such f i l i n g s . I n case o f p a r t s s h o r t a g e s p l e a s e a d v i s e t h e company. The s t a n d a r d Lake Shore Cryotronics warranty i s given on page i i . 2.3 Power Requirements Before connecting t h e power c a b l e t o t h e l i n e , a s c e r t a i n t h a t t h e l i n e v o l t a g e s e l e c t o r s w i t c h (115V o r 230V) is i n t h e a p p r o p r i a t e p o s i t i o n f o r t h e l i n e v o l t a g e t o be used. Examine t h e power l i n e f u s e , FU1, (Key No 1 3 , Page 11) t o i n s u r e t h a t i t i s a p p r o p r i a t e f o r t h e l i n e v o l t a g e . (115V = Amp, 230V = 0.4 Amp) Nominal p e r m i s s i b l e l i n e v o l t a g e f l u c t u a t i o n i s ±10% a t 50 t o 60 112. Caution: Disconnect l i n e cord b e f o r e i n s p e c t i n g o r changing l i n e f u s e . 2.4 Grounding Requirements To p r o t e c t o p e r a t i n g personnel , t h e National E l e c t r i c a l Manufacturers ' Assocation (NEMA) recommends and some l o c a l codes r e q u i r e instrument p a n e l s and c a b i n e t s t o b e grounded. This instrument i s equipped w i t h a three-conductor power c a b l e which, when plugged i n t o an a p p r o p r i a t e r e c e p t a c l e , grounds t h e instrument. 5 FIGURE 2.1 SENSOR AND HEATER CABLES 2.5 Installation The DTC-500 C o n t r o l l e r i s a l l s o l i d s t a t e and does n o t g e n e r a t e s i g n i f i c a n t h e a t . I t may t h e r e f o r e be rack mounted i n c l o s e proximity t o o t h e r equipment i n dead a i r spaces. However, t h e h e a t from such a d j a c e n t equipment should not s u b j e c t t h e DTC-500 C o n t r o l l e r t o an ambient tempera t u r e i n excess o f 5O°C (122°F). As w i t h any p r e c i s i o n i n s t r u m e n t , i t should not be s u b j e c t e d t o t h e shock and v i b r a t i o n s which u s u a l l y accompany h i g h vacuum pumping systems. The recommended c a b l e diagrams f o r t h e s e n s o r diode and h e a t e r element are given i n Figure 2 . 1 ( a ) and ( b ) . The use of a f o u r wire diode connection i s h i g h l y recommended t o avoid i n t r o d u c i n g l e a d I R drops i n t h e v o l t a g e s e n s i n g p a i r . The i n d i c a t e d s h i e l d i n g connections are t h e recommended s t a n d a r d p r a c t i c e t o avoid ground loops. I f thermal c o n s i d e r a t i o n s d i c t a t e , t h e a l t e r n a t e w i r i n g scheme shown i n Fig. 2 . 1 (c) may be used f o r t h e diode. The h e a t i n g element should be f l o a t e d t o p r e c l u d e t h e p o s s i b i l i t y o f any o f t h e h e a t e r c u r r e n t being conducted i n t o t h e d i o d e s e n s o r l e a d s . E l e c t r i c a l feedback i n a d d i t i o n t o t h e d e s i r e d thermal feedback, may cause o s c i l l a t i o n s and c e r t a i n l y erroneous temperature r e a d i n g s . I n s p e c t t h e h e a t e r element f u s e F U 2 , (Key No. 15, Pg. 11) f o r p r o p e r value. ( 3 AG, 1.0A, Slow Blow, o r smaller c u r r e n t r a t i n g i f d e s i r e d . ) This f u s e p r o t e c t s t h e output a m p l i f i e r from damage i n case o f h e a t e r element s h o r t i n g . Use o f a l a r g e r f u s e may cause damage t o t h e instrument and i n v a l i d a t e s t h e instrument warranty. 2.6 Repackaging f o r Shipment Before r e t u r n i n g an instrument t o t h e f a c t o r y f o r r e p a i r , p l e a s e d i s c u s s t h e malfunction w i t h a f a c t o r y r e p r e s e n t a t i v e . He may be a b l e t o s u g g e s t s e v e r a l f i e l d tests which w i l l preclude r e t u r n i n g a s a t i s f a c t o r y instrument t o t h e f a c t o r y when t h e malfunction i s elsewhere. I f it i s i n d i c a t e d t h a t t h e f a u l t i s i n t h e instrument a f t e r t h e s e t e s t s , t h e r e p r e s e n t a t i v e w i l l send s h i p p i n g i n s t r u c t i o n s and l a b e l s f o r r e t u r n i n g i t . When r e t u r n i n g an instrument, p l e a s e a t t a c h a t a g s e c u r e l y t o t h e instrument i t s e l f ( n o t on t h e s h i p p i n g c a r t o n ) c l e a r l y s t a t i n g : (1) Owner and address (2) Instrument Model and S e r i a l Number (3) Mal f u n c t i o n symptoms (4) D e s c r i p t i o n o f e x t e r n a l connections and c r y o s t a t s . I f t h e o r i g i n a l c a r t o n i s a v a i l a b l e , repack t h e instrument i n p l a s t i c bag, p l a c e i n c a r t o n u s i n g o r i g i n a l s p a c e r s t o p r o t e c t p r o t r u d i n g c o n t r o l s , and c l o s e c a r t o n . S e a l l i d with paper o r nylon t a p e . A f f i x mailing l a b e l s and "FRAGILE" warnings. 7 I f t h e o r i g i n a l c a r t o n i s n o t a v a i l a b l e , wrap t h e instrument i n w a t e r p r o o f p a p e r o r p l a s t i c wrapping m a t e r i a l b e f o r e p l a c i n g i n an i n n e r c o n t a i n e r . Place shock a b s o r b i n g material around a l l s i d e s of t h e instrument t o p r e v e n t damage t o p r o t r u d i n g c o n t r o l s . Place t h e i n n e r c o n t a i n e r i n a second heavy c a r t o n and s e a l w i t h t a p e . A f f i x m a i l i n g l a b e l s and "FRAGILE" warnings. 8 SECTION I I I Operating I n s t r u c t i o n s 3.1 Introduction This s e c t i o n c o n t a i n s a d e s c r i p t i o n of t h e o p e r a t i n g c o n t r o l s , t h e i r adjustment under normal o p e r a t i n g c o n d i t i o n s , t y p i c a l c o n t r o l l e r a p p l i c a t i o n s and suggested c r y o s t a t adjustment techniques. These i n s t r u c t i o n s are p r e d i c a t e d upon t h e instrument having been i n s t a l l e d as o u t l i n e d i n S e c t i o n II. The diode p o l a r i t y as shown i n F i g . 2 . 1 (a) i n p a r t i c u l a r must b e c o r r e c t . A c a l i b r a t e d diode i s assumed t o b e connected, as shown i n Fig. 2 . 1 ( a ) , t o t h e "Sensor A" r e c e p t a c l e and a 10 ohm h e a t i n g element is assumed t o b e connected t o t h e "Heater" t e r m i n a l s as shown i n F i g . 2.1 ( b ) . 3.2 C o n t r o l s , I n d i c a t o r s and Connectors The o p e r a t i n g c o n t r o l s , i n d i c a t o r s and connectors on t h e i n s t r u m e n t ' s f r o n t and rear p a n e l s are shown i n Figures 3.1 and 3 . 2 . The numbers w i t h l e a d e r s t o v a r i o u s c o n t r o l s i n t h e f i g u r e s a r e keyed t o t h e e n t r i e s i n Table 3.1. Table 3.1 NO. KEY 1 2 FUNCTION NAME SET POINT 0 - 0.1 - VOLTS SET POINT - VOLTS 0, 1 and 2 VOLTS - Ten t u r n v e r n i e r i n t e r p o l a t o r potentiometer t o continously adjust s e t p o i n t v o l t a g e between switch s e t t i n g and n e x t h i g h e r s e t t i n g . Kelvin-Varley d i v i d e r , s e l e c t s most s i g n i f i c a n t d i g i t s o f setpoint voltage. 3 VOLTS SET POINT 0 t o .9 VOLTS 4 GAIN 1 5 AUTO- RESET OFF, MIN. - MAX. Adjusts gain o f amplifier f o l l o w i n g i n t e g r a t o r . (See Fig. 3.3) E f f e c t i v e l y determines time c o n s t a n t o f i n t e g r a t o r between 3 and 100 seconds. 6 AUTO A , MAN. A, MAN. B. Mode s e l e c t o r s w i t c h : AUTO A u s e s sensor A t o automatically control temperature. MAN. A disengages automatic c o n t r o l f e a t u r e b u t p e r m i t s readout o f s e n s o r A v o l t a g e . MAN. B p e r m i t s readout o f s e n s o r B voltage; - 100 S e l e c t o r s w i t c h o f Kelvin Varley divider 0.1 volt per step Adjusts o v e r a l l c o n t r o l l e r gain ( F i g u r e 3.3) between 330 and 33,000. 9 Table 3.1 ( c o n t . ) NAME FUNCTION 7 MAN. RESET When mode s e l e c t o r s w i t c h (5) i s i n e i t h e r MAN. A o r MAN. B p o s i t i o n , t h e MAN. RESET t e n t u r n p o t e n t i o m e t e r p e r mits t h e u s e r t o manually a d j u s t t h e c u r r e n t t o t h e h e a t e r element. (Caution: High s e t t i n g s w i l l q u i c k l y b o i l away cryogenic f l u i d s ) . 8 MAX. HEATER-AMP. Switch s e l e c t e d c u r r e n t l i m i t e r . Use o f a low s e t t i n g w i l l avoid i n a d v e r t e n t b o i l - o f f i n s e t t i n g up system. 9 POWER A. C. 10 NO LABEL A. C. l i n e p i l o t l i g h t 11 HEATER CURRENT Meters h e a t e r element c u r r e n t . F u l l s c a l e d e f l e c t i o n corresponds t o MAX. HEATER switch ( ) s e t t i n g . NO. KEY l i n e s w i t c h (ON/OFF) . 12 NULL I n d i c a t e s t h e d i f f e r e n c e between t h e s e t p o i n t v o l t a g e and t h e s e n s o r o u t p u t v o l t a g e . Meter i s non- l i n e a r for large errors of e i t h e r sign. 13 115 /2 30V 50-60 HZ A. C. 14 ¼A A. C. l i n e f u s e (FU1). 15 NO LABEL A. C. l i n e cord 16 1.0A, S. B. Heater element l i n e f u s e , 1 AMP., Slow Blow 17 SENSOR A (Five p i n , Sensor A c a b l e r e c e p t a c l e . Amphenol t y p e 126-217 Plug) 18 SENSOR B Sensor R c a b l e r e c e p t a c l e . ( F i v e p i n , Amphenol t y p e 126-217 Plug) 19 TEMP. SET POINT INTERNAL , REMOTE S e l e c t s between i n t e r n a l s e t p o i n t v o l t a g e d i v i d e r and e x t e r n a l d i v i d e r f o r comparison w i t h s e n s o r v o l t a g e . Front p a n e l s e t p o i n t c o n t r o l s i n o p e r a t i v e when s w i t c h i s i n t h e "REMOTE" p o s i t i o n . Be s u r e t h i s c o n t r o l i s set on "INTERNAL"s i n c e i t s l o c a t i o n on t h e rear p a n e l may cause one t o overlook i t s s e t t i n g when i n i t i a l l y checking out t h e i n s t r u m e n t . S. B. l i n e voltage s e l e c t o r s l i d e switch See p a r a . 2 . 3 10 11 12 T a b l e 3.1 (cont.) NAME FUNCTION 20 NO LABEL Remote s e t p o i n t v o l t a g e d i v i d e r c a b l e r e c e p t a c l e (Amphenol 126-195 Plug) 21 HEATER Heater element l e a d t e r m i n a l s (Grey i s t h e h i g h s i d e and Black i s t h e low s i d e ) . 22 GROUND C h a s s i s ground t e r m i n a l NO. KEY 3.3 I n i t i a l Checks I n i t i a l checks, c a l i b r a t i o n checks, and s e r v i c i n g p r o c e d u r e s a r e d e s c r i b e d i n S e c t i o n V, MAINTENANCE. 3.4 Temperature Readout Mode To u s e t h e DTC-500 as a c r y o g e n i c thermometer t o measure t h e t e m p e r a t u r e of a c a l i b r a t e d d i o d e connected t o SENSOR A t e r m i n a l s , i n i t i a l l y p o s i t i o n s w i t c h e s and c o n t r o l s as follows: (1) Temperature s e t p o i n t s w i t c h (Key No. 19) t o ''INTERNAL". (2) Mode s w i t c h (Key No. 6) t o WAN. A". (3) "MAN. RESET" (Key (4) "MAX. HEATER-AMP." (5) "GAIN" (Key No. 4) t o minimum s e t t i n g , (6) "AUTO RESET" (Key No. 5) t o o f f . No. 7) t o zero. (Key No, 8) t o 0.01. (7) "POWER'' s w i t c h (Key No, 9) t o on. The n u l l meter w i l l probably d e f l e c t off s c a l e ( e i t h e r l e f t o r r i g h t ) when t h e power s w i t c h i s t u r n e d on. I f t h e d e f l e c t i o n is t o t h e l e f t , t h e s e t p o i n t voltage i s l e s s than t h e sensor voltage. If t h e d e f l e c t i o n i s t o t h e r i g h t , t h e s e t p o i n t voltage i s g r e a t e r than t h e sensor voltage. Adjust t h e s e t p o i n t v o l t a g e u n t i l t h e "NULL" meter i s c e n t e r e d w h i l e i n c r e a s i n g t h e "GAIN'' towards maximum. I n c r e a s i n g t h e v o l t a g e w i l l move t h e meter p o i n t e r t o t h e r i g h t ; d e c r e a s i n g t h e s e t p o i n t v o l t a g e w i l l d e f l e c t t h e meter p o i n t e r t o the left. A f t e r c e n t e r i n g t h e meter, r e a d t h e s e t p o i n t v o l t a g e by adding t h e v e r n i e r p o t e n t i o m e t e r r e a d i n g (approximately s c a l e d ) to t h e "SET POINT" s w i t c h s e t t i n g v a l u e . The t e n t u r n d i a l ' s 500 d i v i s i o n s correspond t o 100 m i l l i v o l t s , so t h a t each d i a l d i v i s i o n corresponds t o 0.2 m i l l i v o l t s , r e a d a b l e t o 0.1 m i l l i v o l t . 13 14 FIGURE 3.4 TEMPERATURE VERSUS TIME CHARACTERISTICS OF CONTROLLER 15 After d e t e r m i n i n g t h e s e t p o i n t v o l t a g e , r e f e r t o t h e diode c a l i b r a t i o n c h a r t t o a s c e r t a i n t h e diode temperature. 3.5 Constant Temperature Control Mode Assume t h a t a c a l i b r a t e d diode i s i n u s e as d e s c r i b e d i n paragraph 3 . 4 . To maintain a c o n s t a n t t e m p e r a t u r e , determine t h e corresponding s e t p o i n t v o l t a g e from t h e diode c a l i b r a t i o n c h a r t . S e t t h i s v o l t a g e on t h e "SET POINT" s w i t c h and v e r n i e r . P o s i t i o n c o n t r o l s as i n d i c a t e d below: (1) Temperature s e t p o i n t s w i t c h (Key No. 19) t o ''INTERNAL.'' (2) Mode s w i t c h (Key No. 6 ) t o "AUTO A." (3) "MAN. RESET" (Key No. 7) t o zero. (4) "MAX. HEATER-AMP" (5) "GAIN" (6) "AUTO RESET" (Key No. 5) t o o f f . (7) "SET POINT VOLTS" s w i t c h and p o t e n t i o m e t e r t o v o l t a g e corresponding t o d e s i r e d temperature. (8) "POWER" (Key No, 8) t o 1.0 AMP. (Key No. 4) t o minimum s e t t i n g . s w i t c h (Key No. 9) t o on. I f t h e b l o c k o r sample h o l d e r whose t e m p e r a t u r e i s t o b e c o n t r o l l e d i s c o l d e r t h a n t h e s e t p o i n t t e m p e r a t u r e , t h e s e n s o r d i o d e v o l t a g e w i l l be high and t h e n u l l meter w i l l d e f l e c t t o t h e l e f t . Slowly i n c r e a s e t h e "GAIN" s e t t i n g (Key No. 4) i n a clockwise d i r e c t i o n . The "HEATER CURRENT'' meter s h o u l d show an immediate up scale d e f l e c t i o n p r o p o r t i o n a l t o t h e "GAIN" s e t t i n g . The "NULL" meter s h o u l d s t a r t t o come o f f i t s f u l l l e f t d e f l e c t i o n p o s i t i o n as t h e g a i n i s i n c r e a s e d . As t h e sample h o l d e r temperature approaches t h e s e t p o i n t t e m p e r a t u r e , t h e NULL meter w i l l approach c e n t e r s c a l e and t h e "HEATER CURRENT" meter w i l l assume a s t e a d y value even with a f u r t h e r i n c r e a s e i n t h e g a i n s e t t i n g . Continue t o i n c r e a s e t h e gain u n t i l an incremental change i n gain produces a n e g l i g i b l e r e d u c t i o n i n t h e n u l l e r r o r , b u t n o t s o high as t o produce o s c i l l a t i o n s . To f u r t h e r reduce t h e n u l l e r r o r , r o t a t e t h e "AUTO RESET" gain c o n t r o l (Key No. 5) o u t o f t h e d e t e n t ( o f f ) p o s i t i o n i n t h e clockwise d i r e c t i o n . As t h e c o n t r o l i s advanced, t h e n u l l meter should approach t h e c e n t e r p o s i t i o n with unobservable e r r o r . Leave t h e "AUTO RESET'' v e r n i e r i n t h e p o s i t i o n r e q u i r e d t o reduce t h e n u l l e r r o r t o z e r o , b u t below any l e v e l which induces oscillations. As t h e NULL METER p o i n t e r approaches z e r o , t h e HEATER CURRENT w i l l i n c r e a s e from zero t o t h e new s t e a d y s t a t e v a l u e r e q u i r e d t o maintain t h e sample a t t h e lower temperature r e q u e s t e d . The NULL METER should r e a d zero as t h e HEATER CURRENT s t a b i l i z e s a t i t s new v a l u e . Now a b r u p t l y d e c r e a s e t h e s e t p o i n t v e r n i e r c o n t r o l by t e n u n i t s . The NULL meter s h o u l d d e f l e c t t o t h e l e f t and t h e HEATER CURRENT meter should d e f l e c t toward f u l l scale. A s t h e sample h o l d e r h e a t s , t h e NULL meter p o i n t e r w i l l t e n d t o z e r o and t h e HEATER CURRENT meter r e a d i n g will d e c r e a s e toward i t s new s t e a d y s t a t e v a l u e . A s t h e NULL meter c e n t e r s , t h e HEATER CURRENT should s t a b i l i z e a t t h e new c o n s t a n t v a l u e r e q u i r e d t o maintain t h e d e s i r e d temperature. A s k e t c h o f t h e t e m p e r a t u r e v e r s u s time p a t t e r n d e s c r i b e d above i s given i n Figure 3.4. Observe t h a t t h e r e i s no temperature overshoot o r o s c i l l a t i o n when t h e "GAIN" and "AUTO RESET'' c o n t r o l s are p r o p e r l y a d j u s t e d . (This s t a t e ment presupposes t h a t t h e sample h o l d e r may be a c c u r a t e l y modeled as a simple R-C t y p e time c o n s t a n t c i r c u i t . ) I f o s c i l l a t i o n o r overshoot a r e observed when changing t h e s e t p o i n t v o l t a g e i n small i n c r e m e n t s , reduce t h e G A I N and AUTO RESET s e t t i n g s u n t i l o s c i l l a t i o n s are no l o n g e r observed. 3.6 Manual Heating Mode By p l a c i n g t h e mode s e l e c t o r s w i t c h (Key No. 6) i n e i t h e r p o s i t i o n MAN. A o r MAN. B, a c o n s t a n t c u r r e n t may b e s u p p l i e d t o t h e h e a t e r element. The magnitude o f t h e c u r r e n t i s determined by t h e s e t t i n g o f t h e MAN. RESET p o t e n t i o m e t e r (Key No. 7) and t h e MAX. HEATER AMP. s w i t c h (Key No. 8 ) . The c u r r e n t s u p p l i e d t o t h e h e a t e r i s i n d i c a t e d on t h e HEATER CURRENT meter. The f u l l scale r e a d i n g of t h e meter corresponds t o t h e MAX. HEATER AMP switch s e t t i n g . 3.7 Temperature Readout Mode (Sensor B) I n some a p p l i c a t i o n s , t h e t e m p e r a t u r e i s c o n t r o l l e d ( o r r e g u l a t e d ) a t one p h y s i c a l l o c a t i o n w h i l e i t i s d e s i r e d t o measure t h e temperature a t a second l o c a t i o n , T h i s r e q u i r e s two s e n s o r s , "Sensor A" l o c a t e d a t t h e tempera t u r e c o n t r o l p o i n t and "Sensor B" a t t h e second p o i n t where only t h e t e m p e r a t u r e i s t o b e measured. Sensor B must be c a l i b r a t e d . Assume t h a t t h e t e m p e r a t u r e a t Sensor A has been s t a b i l i z e d by o p e r a t i n g t h e c o n t r o l l e r i n t h e c o n s t a n t temperature c o n t r o l mode a s d e s c r i b e d i n S e c t i o n 3.5. By o b s e r v i n g t h e s t e a d y HEATER CURRENT r e a d i n g , one may s w i t c h t o t h e MAN. A mode as d e s c r i b e d i n S e c t i o n 3.6 and e s t a b l i s h t h i s same c u r r e n t by a d j u s t i n g t h e MAN RESET p o t e n t i o m e t e r . By a l t e r n a t i n g between t h e AUTO A 17 and Man A modes, t h e MAN RESET p o t e n t i o m e t e r may b e trimmed s u f f i c i e n t l y a c c u r a t e l y t o hold t h e temperature s t e a d y i n t h e MAN A p o s i t i o n . Then switch t o t h e MAN B p o s i t i o n and q u i c k l y a d j u s t t h e SET POINT VOLT s w i t c h and p o t e n t i o m e t e r t o zero t h e NULL meter. This r e a d i n g i s used t o determine t h e temperature o f Sensor B. After t a k i n g t h e Sensor B v o l t a g e r e a d i n g , r e s e t t h e SET POINT VOLT s w i t c h and p o t e n t i o m e t e r t o t h e d e s i r e d temperature c o n t r o l p o i n t and then r e t u r n t o AUTO A c o n t r o l mode. I f t h e r e is a p p r e c i a b l e n u l l e r r o r upon r e t u r n i n g t o t h e AUTO A mode o f c o n t r o l , t h e adjustment o f t h e MAN RESET c o n t r o l should b e r e f i n e d and t h e measurement of t h e Sensor B v o l t a g e r e p e a t e d . S i n c e t h e system i s o p e r a t i n g "open loop" o r i s "coasting" i n both t h e MAN A and MAN B mode of c o n t r o l p o s i t i o n s , no adjustments o r changes should be made i n t h e c r y o s t a t system which would i n t r o d u c e t r a n s i e n t s d u r i n g t h i s p e r i o d o f time. 3.8 Remote Temperature Programming Remote temperature c o n t r o l can be achieved by r e p l a c i n g t h e i n t e r n a l Kelvin-Varley v o l t a g e d i v i d e r w i t h an e x t e r n a l r e s i s t i v e d i v i d e r connected t o J 3 and s w i t c h i n g t h e "TEMPERATURE SET POINT" t o t h e "REMOTE" p o s i t i o n . To i n s u r e maximum accuracy, t h e t o t a l r e s i s t a n c e between p i n s E-D o f J should be equal t o 515 ohms. The remote s e t p o i n t connection diagram i s shown i n Figure 3.5. Equivalent S e t P o i n t Network Shield Figure 3.5 18 A number o f e x t e r n a l temperature programming networks a r e shown i n Figure 3 . 6 . TRIM Figure 3 . 6 The following i s a s u g g e s t e d procedure f o r designing e x t e r n a l temperature s e t point control c i r c u i t r y : 1. Determine t h e range of d e s i r e d temperature c o n t r o l v o l t a g e . 2. Choose t h e most s u i t a b l e c o n t r o l c i r c u i t f o r your a p p l i c a t i o n : a,) Temperature c o n t r o l range 19 c.) Fixed temperature s e t p o i n t s s e l e c t e d i n s t e p s . d.) Most f l e x i b l e arrangement allowing f o r s e l e c t e d s t e p s and c o n t i n u o u s l y v a r i a b l e t e m p e r a t u r e s e t points. A d d i t i o n a l v a r i a t i o n s o f t h e above may be t a i l o r e d t o f i t t h e i n t e n d e d application. 3. To i n s u r e t h a t t h e t o t a l r e s i s t a n c e between p i n s E & D of t h e e x t e r n a l programming v o l t a g e d i v i d e r be of t h e c o r r e c t v a l u e t o develop a drop o f 3 v o l t s , it i s s u g g e s t e d t h a t t h e d i v i d e r c a l c u l a t i o n be based on approximately 20 ohms p e r 0 . 1 v o l t s and a s h u n t i n g r e s i s t o r (R1 i n F i g . 3 . 6 a) used f o r p r e c i s i o n trimming. The 3 . 0 v o l t s between p i n s E-D can be measured w i t h a p r e c i s i o n f l o a t i n g v o l t m e t e r o r c a l i b r a t e d with t h e DTC-500 i n t e r n a l s e t p o i n t v o l t s s w i t c h and 10 t u r n d i a l as f o l l o w s : a.) Connect a p r e c i s i o n r e s i s t o r R (any v a l u e between 50K-250K) t o t h e p i n s A-B of t h e s e n s o r A i n p u t p l u g J (amphenal t y p e 126-217 o r e q u i v a l e n t ) i n p l a c e of t h e s e n s o r as shown i n Fig. 3 . 7 , and t u r n t h e s e n s o r s e l e c t o r switch on t h e f r o n t p a n e l t o Manual A p o s i t i o n . Shield Figure 3 . 7 The v o l t a g e drop a c r o s s r e s i s t o r R i s e q u a l t o 10 x 10-6 x R v o l t s , t h u s a 100K ohm r e s i s t a n c e would r e s u l t i n a 1 v o l t drop. With t h e reformer "TEMPERATURE SET POINT'' s w i t c h on t h e r e a r of t h e i n s t r u m e n t , i n "INTERNAL" p o s i t i o n , t h e n u l l meter w i l l i n d i c a t e zero e r r o r when t h e i n t e r n a l temperature s e t p o i n t s w i t c h on t h e f r o n t p a n e l i s a t 1.000 v o l t s . I n c r e a s e t h e gain t o maximum and a d j u s t t h e 10 t u r n d i a l a t t h e i n t e r n a l s e t p o i n t c o n t r o l if n e c e s s a r y f o r t h e n u l l meter t o i n d i c a t e zero. Move t h e r e f e r e n c e s e t p o i n t s w i t c h on t h e r e a r p a n e l t o e x t e r n a l p o s i t i o n and a d j u s t t r i m r e s i s t o r R on t h e e x t e r n a l set p o i n t programming instrument s o t h a t t h e n u l l meter r e a d s zero. The external programming network i s now matched t o t h e i n t e r n a l r e f e r e n c e s o u r c e . Although one p o i n t c a l i b r a t i o n as d e s c r i b e d above i s s u f f i c i e n t , it may be d e s i r a b l e t o check s e v e r a l p o i n t s . In t h a t c a s e , a p r e c i s i o n r e s i s t a n c e d i v i d e r may b e used f o r R i n t h e s e n s o r i n p u t c o n n e c t o r , however t h e l e a d s as well as t h e d i v i d e r r e s i s t o r should b e s h i e l d e d 20 and the shields connected to pin H of the sensor A input connector (J1). Similarly, the leads and box housing the externally programmable temperature resistance network should be shielded through pin H of external set point plug (J3). 3.9 Grounding The chassis is grounded by the 3 lead power cable t o the electrical supply common ground. The common lead of the controller circuitry ("Lo" terminal of the heater output - Key 21, Fig. 3.2) is externally connected to the chassis ground terminal. Although the grounding of the controller common is normal operation practice, the common "Lo" terminal may be disconnected from chassis ground if doing so helps to eliminate accidental ground loops within the system. 21 SECTION IV Theory o f Operation 4.1 Introduction This s e c t i o n c o n t a i n s t h e t h e o r y o f o p e r a t i o n o f t h e DTC-500 C o n t r o l l e r and a f u n c t i o n a l c h a r a c t e r i z a t i o n of t h e c o n t r o l l e r i n Laplace t r a n s f o r m n o t a t i o n t o a i d t h e thermal system d e s i g n e r i n system s t a b i l i t y a n a l y s i s . 4.2 General D e s c r i p t i o n Refer t o Figure 3.3 and Figure 5 . 2 a s an a i d i n t h e following d i s c u s s i o n . With r e f e r e n c e t o Figure 3 . 3 , a p r e c i s i o n c o n s t a n t c u r r e n t s o u r c e causes 10 microamperes o f c u r r e n t t o flow through t h e s e n s o r diode. The set p o i n t v o l t a g e s o u r c e ( o r bucking v o l t a g e ) i s s u b t r a c t e d from t h e diode v o l t a g e and t h e d i f f e r e n c e ( o r e r r o r ) s i g n a l i s a m p l i f i e d i n a v a r i a b l e gain amplifier s t a g e ( o p e r a t i o n a l ampliThe amplified e r r o r i s d i s p l a y e d on t h e NULL meter and a l s o f i e r A2 i n Fig. 5 . 1 ) . a p p l i e d t o (1) a gain o f 20 a m p l i f i e r , (2) an i n t e g r a t o r c i r c u i t and (3) a bound o r clamping c i r c u i t . The bounding c i r c u i t d i s a b l e s t h e i n t e g r a t o r f o r l a r g e e r r o r s . The output o f t h e i n t e g r a t o r i s a m p l i f i e d by a v a r i a b l e gain a m p l i f i e r whose gain i s s e t by t h e AUTO RESET p o t e n t i o m e t e r . The gain range i s from 1 t o 100. The i n t e g r a t o r , bounding c i r c u i t , p o s t i n t e g r a t o r v a r i a b l e g a i n a m p l i f i e r and c o n s t a n t gain o f 2 0 a m p l i f i e r are a s s o c i a t e d with o p e r a t i o n a l a m p l i f i e r A3, t r a n s i s t o r Q 1 and f i e l d e f f e c t t r a n s i s t o r 4 2 i n Figure 5.1. The processed e r r o r s i g n a l d r i v e s t h e output power a m p l i f i e r c i r c u i t whose v o l t a g e g a i n i s 2 . Operational a m p l i f i e r A4 and t r a n s i s t o r s 4 3 and 44 i n Fig. 5.1 comprise t h e power a m p l i f i e r . The output o f t h e power a m p l i f i e r i s metered by t h e HEATER CURRENT i n d i c a t o r and passed t o t h e h e a t e r element. Closed looped c o n t r o l a c t i o n i s achieved by p r o v i d i n g a thermal s i g n a l p a t h between t h e h e a t e r element and t h e temperature s e n s i n g diode. T o i l l u s t r a t e t h e automatic temperature c o n t r o l a c t i o n , suppose t h e s e n s i n g diode i s c o l d e r t h a n t h e programmed temperature s e t t i n g . The diode v o l t a g e w i l l be g r e a t e r t h a n t h e s e t p o i n t v o l t a g e which r e s u l t s i n an e r r o r v o l t a g e . The g r e a t l y a m p l i f i e d e r r o r s i g n a l causes a c u r r e n t t o flow i n t h e h e a t i n g element which raises t h e diode temperature and reduces i t s v o l t a g e . As t h e diode temperature approaches t h e s e t p o i n t t e m p e r a t u r e , t h e e r r o r s i g n a l i s reduced and less power i s s u p p l i e d t o t h e h e a t e r element. A t some small temperature e r r o r ( o r o f f s e t ) t h e power s u p p l i e d t o t h e h e a t e r element i s j u s t s u f f i c i e n t t o h e a t t h e sample h o l d e r and diode t o maintain a s t e a d y b u t s l i g h t l y lower temperature. The AUTOMATIC RESET f e a t u r e o f t h e c o n t r o l l e r i s used t o reduce t h i s e r r o r t o zero. The automatic reset c i r c u i t i n t e g r a t e s t h e e r r o r and t h i s accumulated s i g n a l d r i v e s t h e output power a m p l i f i e r . The i n t e g r a t o r s i g n a l continues t o grow as long as an e r r o r e x i s t s . The h e a t e r c u r r e n t c o n t i n u e s t o i n c r e a s e i n response t o t h e i n t e g r a t o r s i g n a l . Eventually t h e e r r o r i s d r i v e n t o zero and t h e i n t e g r a t o r s i g n a l assumes a c o n s t a n t value. T h i s s i g n a l i s p r e c i s e l y t h e v a l u e of h e a t e r c u r r e n t r e q u i r e d t o maintain t h e e r r o r a t z e r o , The i n t e g r a t o r c a p a c i t o r s t o r e s o r "remembers" t h i s s i g n a l as t h e a p p r o p r i a t e h e a t e r c u r r e n t l e v e l t o maintain temperature coincidence between t h e diode and t h e s e t p o i n t temperature. I n c o n t r o l t h e o r y * terminology, t h e AUTO RESET c i r c u i t raises t h e system t y p e number from zero t o one, *"Feedback Control System Analysis and Synthesis" by John J . D ' A Z Z O and Constantine H. Houpis, McGraw-Hill Book Co., N e w York, 1966, P g . 397. 22 23 FIGURE 4.2 SIMPLIFIED EQUIVALENT CIRCUIT OF AUTOMATIC RESET AMPLIFIER 24 4.3 Detailed Description (a) Regulated Power S u p p l i e s There are f i v e , e s s e n t i a l l y i d e n t i c a l , r e g u l a t e d power s u p p l i e s i n t h e instrument. They are d e s i g n a t e d as PS-1 through PS-5 i n Figure 5.1. Each supply uses an i n t e g r a t e d uA723 t y p e P r e c i s i o n Voltage Regulator as i t s main component. A d e t a i l e d drawing o f one o f t h e s u p p l i e s i s given i n F i g . 4 . 1 . A d e s c r i p t i o n o f t h i s supply should s u f f i c e f o r a l l t h e o t h e r s . The secondary v o l t a g e of t r a n s f o r m e r T 1 appearing a t t e r m i n a l s 1 4 and 15 i s r e c t i f i e d by diode r e c t i f i e r b r i d g e CR1-4 and f i l t e r e d by c a p a c i t o r C 1 . This u n r e g u l a t e d v o l t a g e i s a p p l i e d t o t h e uA723 power supply l e a d s 1 2 and 7 . The r e f e r e n c e v o l t a g e op-amp i n t h e uA723 produces a s t a b l e , 7 . 1 v o l t r e f e r e n c e v o l t a g e a t p i n 6. This v o l t a g e i s e x t e r n a l l y coupled t o t h e non-inverting i n p u t t o t h e r e g u l a t o r op-amp. (pin 5 ) by r e s i s t o r R 1 . The value o f R i s chosen t o be equal t o t h e p a r a l l e l combination o f R3 and R4 t o minimize o f f s e t e r r o r s . R e s i s t o r s R3 and R4 sample a f r a c t i o n o f t h e o u t p u t v o l t a g e and apply i t t o t h e i n v e r t i n g i n p u t , p i n 4. The r e g u l a t o r op-amp a t t e m p t s t o maintain t h e p o t e n t i a l at p i n s 4 and 5 equal t o one a n o t h e r i n s p i t e o f v a r i a t i o n s i n t h e l i n e v o l t a g e and load c u r r e n t . The output c u r r e n t i s passed through R2. Automatic c u r r e n t l i m i t i n g i s accomplished by c u r r e n t sampling r e s i s t o r R 2 and t h e c u r r e n t s h u t down t r a n s i s t o r connected t o p i n s 2 and 3. I f t h e c u r r e n t through R 2 i s e x c e s s i v e , t h e r e s u l t i n g v o l t a g e developed a c r o s s R2 causes t h e t r a n s i s t o r t o conduct, d i v e r t i n g base c u r r e n t from t h e s e r i e s p a s s t r a n s i s t o r . (b) Diode Constant Current Supply R e f e r r i n g t o Fig. 5.1, power s u p p l i e s PS-1 and PS-2, and o p e r a t i o n a l a m p l i f i e r A 1 c o n s t i t u t e t h e main components i n t h e diode c o n s t a n t c u r r e n t supply. Due t o t h e high i n p u t impedance of t h e o p e r a t i o n a l a m p l i f i e r A1, t h e diode c u r r e n t i s forced t o flow through r e s i s t o r R26 developing 4.99V a t 10 uAmps. The wiper o f p o t e n t i o m e t e r R23 i s p o s i t i o n e d S O t h a t an equal v o l t a g e i s developed between t h e w i p e r o f R23 and t h e j u n c t i o n of CR-22A and R24. With t h e wiper s o a d j u s t e d , any v a r i a t i o n i n t h e diode c u r r e n t w i l l r e s u l t i n a d i f f e r e n t i a l e r r o r v o l t a g e . When a m p l i f i e d and a p p l i e d t o t h e cathode o f t h e s e n s o r diode, t h i s s i g n a l will b e o f such a p o l a r i t y as t o d r i v e t h e diode c u r r e n t back towards i t s design v a l u e o f 10 uAmps. The e n t i r e c o n s t a n t c u r r e n t supply system was designed t o be f u l l y f l o a t i n g s o t h a t t h e cathode o f t h e s e n s o r diode might b e r e t u r n e d t o common. (c) S e t Point Voltage Supply and Divider F l o a t i n g power supply PS-3 p r e r e g u l a t e s t h e v o l t a g e used t o supply r e f e r e n c e diode CR-13. The doubly r e g u l a t e d v o l t a g e appearing between t i e p o i n t (TP) 5 and t h e cathode o f CR-13 i s a p p l i e d t o a 3 s t a g e Kelvin-Varley v o l t a g e d i v i d e r c o n s i s t i n g o f R101, R117, R28, R29, R33 and R34. The s e t p o i n t v o l t a g e p r o p e r c o n s i s t s of t h e p o t e n t i a l developed between t i e p o i n t 5 and t h e wiper o f p o t e n t i o m e t e r R28. The f l o a t i n g s e t p o i n t v o l t a g e power supply and Kelvin-Varley v o l t a g e d i v i d e r c o n s t i t u t e a p o t e n t i o m e t e r loop, When t h e s e t p o i n t v o l t a g e e q u a l s t h e s e n s o r diode v o l t a g e , no e r r o r s i g n a l appears a t t h e i n p u t t e r m i n a l s o f p r e a m p l i f i e r A2. 25 (d) Variable Gain A m p l i f i e r The v a r i a b l e g a i n a m p l i f i e r shown i n F i g . 3 . 3 , w i t h a g a i n range o f 7 . 5 t o 750 , i s r e a l i z e d by c h o p p e r - s t a b i l i z e d o p e r a t i o n a l amplifier A2. The i n p u t r e s i s t o r i s R32 and t h e feedback element c o n s i s t s o f R35 and R41 and p o t e n t i o m e t e r R37 and R38 and r e s i s t o r s R39, R40 and R 4 1 . Diodes CR-26, 2 7 , 2 8 , 29 o r R39 and R40 comprise a s o f t - l i m i t e r c i r c u i t r y . Large s i g n a l s cause forward b i a s e d diodes t o conduct which i n t u r n reduces t h e e f f e c t i v e feedback r e s i s t a n c e and a m p l i f i e r g a i n , and p r e v e n t s t h e a m p l i f i e r from s a t u r a t i n g , The o u t p u t o f a m p l i f i e r A2 d r i v e s t h e n u l l meter and subsequent s t a g e A3. For small e r r o r s , t h e meter r e a d i n g i s p r o p o r t i o n a l t o t h e e r r o r . As t h e e r r o r amplitude i n c r e a s e s , e i t h e r diode CR-35 o r CR-36 conducts c a u s i n g t h e meter r e a d i n g t o b e l o g a r i t h m i c . Cross-over from l i n e a r t o n o n - l i n e a r d e f l e c t i o n occurs a t approximately 60% o f f u l l scale. 26 ( e ) Automatic-Reset C i r c u i t , Bounding C i r c u i t The bound c i r c u i t , i n t e g r a t o r , v a r i a b l e gain a m p l i f i e r (Av o f 1 t o 1 0 0 ) , and t h e c o n s t a n t gain o f 20 a m p l i f i e r shown i n F i g . 3 . 3 are r e a l i z e d by o p e r a t i o n a l a m p l i f i e r A3, b i p o l a r t r a n s i s t o r Q 1 and f i e l d e f f e c t t r a n s i s t o r Q2 i n Fig. 5.1. A s i m p l i f i e d e q u i v a l e n t c i r c u i t of t h e s t a g e i s given i n Fig. 4 . 2 . A p p l i c a t i o n o f t h e p r i n c i p l e t h a t t h e summing j u n c t i o n c u r r e n t s must add t o z e r o y i e l d s t h e o v e r a l l t r a n s f e r f u n c t i o n o f t h e s t a g e . The c o n s t a n t gain of 20 amplifier i n Fig. 3.3 is r e p r e s e n t e d by t h e term R57/R45 while t h e v a r i a b l e gain a m p l i f i e r following t h e i d e a l i n t e g r a t o r i s r e p r e s e n t e d by t h e term ( 1 + R57/Re)/R45C20 i n t h e e q u a t i o n i n Fig. 4 . 2 . The bounding c i r c u i t d i s a b l e s t h e i n t e g r a t i n g f u n c t i o n f o r l a r g e e r r o r s when r a p i d c o r r e c t i v e a c t i o n is d e s i r e d . The memory a c t i o n o f i n t e g r a t i n g capac i t o r C20 causes t h e c o n t r o l l e r t o be s l u g g i s h i n such t r a n s i e n t o p e r a t i o n s . The method o f d i s a b l i n g t h e c a p a c i t o r depends upon t h e s i g n o f t h e e r r o r and t h e p o l a r i t y o f t h e v o l t a g e a c r o s s C20. I f t h e v o l t a g e a c r o s s c a p a c i t o r C17 is o f such a p o l a r i t y as t o make TP19 p o s i t i v e with r e s p e c t t o TP17, diode CR-33 conducts reducing t h e e f f e c t i v e gain o f t h e s t a g e and d i s c h a r g i n g t h e c a p a c i t o r . The second mode o f bounding occurs if t h e e r r o r s i g n a l a t t h e base of Q 1 becomes e x c e s s i v e l y n e g a t i v e . Q 1 i s normally b i a s e d by CR-30 s o t h a t f i e l d e f f e c t t r a n s i s t o r 42 i s c u t - o f f (approximately -9V) at t h e g a t e . As t h e base o f Q1 becomes more n e g a t i v e , Q 1 conducts c u r r e n t , i n c r e a s i n g t h e c o l l e c t o r v o l t a g e toward zero. The reduced b i a s on FET Q2 causes i t s source-drain impedance t o a c t as a shunt r e s i s t o r a c r o s s c a p a c i t o r C20. This s h u n t i n g e f f e c t d i s c h a r g e s t h e c a p a c i t o r and c o n v e r t s t h e i d e a l i n t e g r a t o r a c t i o n t o a t y p e zero a c t i o n . The switch S3 i s open when t h e AUTO RESET c o n t r o l is i n t h e o f f p o s i t i o n . (f) Output Power Amplifier The processed e r r o r s i g n a l appearing a t TP18 is g r e a t l y a m p l i f i e d i n power by op-amp A4, Q3, and Q4 b e f o r e b e i n g a p p l i e d t o t h e h e a t e r element. T r a n s i s t o r s Q3 and Q4 c o n s t i t u t e a Darlington s e r i e s p a s s element i n a c u r r e n t a m p l i f i e r c i r c u i t . They are i n s i d e t h e feedback loop a s s o c i a t e d w i t h op-amp A4, R65 b e i n g t h e feedback r e s i s t o r . The i n p u t r e s i s t o r f o r t h e op-amp i s R62 s o t h a t t h e v o l t a g e gain o f t h e power a m p l i f i e r c i r c u i t i s R65/R62 o r approximately 3.5. A t r a t e d output c u r r e n t o f one ampere, t h e v o l t a g e appearing a t TP20 i s -10.5 v o l t s . Use o f a h e a t e r r e s i s t a n c e i n excess of t e n ohms will reduce t h e a v a i l a b l e h e a t e r c u r r e n t below t h e r a t e d maximum value of 1 ampere. Winding 5-6-7 on t r a n s f o r m e r T1, diodes CR-22 and CR-23 and c a p a c i t o r C16 c o n s t i t u t e s t h e power supply f o r t h e s e r i e s p a s s elements 4 3 and 44. Power s u p p l i e s PS-4 and PS-5 are s u p p l i e s f o r o p e r a t i o n a l a m p l i f i e r s A 2 , A3 and A4, t r a n s i s t o r 41 and FET 42. (g) Manual He a t e r Current Control When t h e mode s e l e c t o r switch is set t o e i t h e r MAN A o r MAN B p o s i t i o n , switch s e c t i o n S1-F connects t h e i n p u t o f t h e power a m p l i f i e r s t a g e t o t h e wiper 27 o f p o t e n t i o m e t e r R54. Varying t h e wiper p o s i t i o n from z e r o t o i t s maximum w i l l vary t h e v o l t a g e a t TP20 from z e r o t o -10 v o l t s . The h e a t e r element c u r r e n t i s t h u s v a r i e d p r o p o r t i o n a t e l y t o t h e s e t t i n g o f R54 and t h e maximum h e a t e r c u r r e n t s w i t c h (S4) p o s i t i o n . (h) t i e a t e r Current Metering and L i m i t i n g The h e a t e r element c u r r e n t i s measured by t h e h e a t e r c u r r e n t ammeter, shunted by r e s i s t o r R201 through R205 as a p p r o p r i a t e f o r t h e c u r r e n t range s e l e c t e d . The f u l l scale output c u r r e n t i s determined by t h e s e r i e s combinat i o n o f t h e h e a t e r element r e s i s t a n c e and one of t h e group of r e s i s t o r s R206 through R209. T h i s s e r i e s combination i s connected a c r o s s t h e nominal -10.5 v o l t o u t p u t o f t h e power a m p l i f i e r . Approximately .5 v o l t s appears a c r o s s t h e IMA c u r r e n t meter and R66. Under no circumstances s h a l l t h e r a t i n g of f u s e FU2 be i n c r e a s e d above one ampere i n an attempt t o achieve a power d i s s i p a t i o n o f t e n watts i n a h e a t e r element whose resistance i s less t h a n t e n ohms. Such a s u b s t i t u t i o n i n v a l i d a t e s t h e i n s t r u m e n t warranty and i s l i k e l y t o damage t h e o u t p u t power amplifier circuit. 25 SECTION V Maintenance and Troubleshooting 5.1 Introduction T h i s s e c t i o n c o n t a i n s i n s t r u c t i o n s f o r m a i n t a i n i n g and c a l i b r a t i n g t h e c o n t r o l l e r , nominal v o l t a g e v a l u e s and g a i n s , c i r c u i t s c h e m a t i c diagram, p r i n t e d c i r c u i t board component diagram and p a r t s l i s t . 5.2 T e s t Equipment and Accessories An RCA S e n i o r Voltohmist vacuum t u b e v o l t m e t e r o r an e q u i v a l e n t high i n p u t impedance d i g i t a l v o l t m e t e r ; a t e n ohm, t e n watt r e s i s t o r t o s i m u l a t e t h e h e a t e r element; and a p r e c i s i o n r e s i s t o r connected t o s i m u l a t e t h e d i o d e i n a c o n n e c t o r assembly wired a c c o r d i n g t o Fig. 2.1 ( c ) a r e normally s u f f i c i e n t f o r t e s t i n g and c a l i b r a t i n g t h e DTC-500 C o n t r o l l e r . 5.3 General Remarks Upon i n i t i a l i n s t a l l a t i o n , t h e s i n g l e most p r o b a b l e cause of system malf u n c t i o n i s an improperly connected t e m p e r a t u r e s e n s i n g diode. I f it i s impossible t o z e r o t h e n u l l meter a t any s e t t i n g of t h e s e t p o i n t v o l t a g e c o n t r o l s , c a r e f u l l y examine t h e c a b l e / d i o d e assembly t o i n s u r e t h a t t h e d i o d e p o l a r i t y i s c o r r e c t , t h a t t h e s e n s o r i s plugged i n t o t h e "SENSOR A" r e c e p t a c l e and t h a t t h e "TEMPERATURE SET POINT/INTERNAL/REMOTE" s l i d e s w i t c h a t t h e r e a r of t h e c a s e is i n t h e INTERNAL p o s i t i o n . Because of t h e h i g h l y r e l i a b l e s o l i d s t a t e d e s i g n of t h e c o n t r o l l e r , it i s most u n l i k e l y t h a t t h e c o n t r o l l e r w i l l be a s o u r c e o f d i f f i c u l t y . For t h i s r e a s o n , it i s a d v i s a b l e t o examine o t h e r p o r t i o n s of t h e c r y o g e n i c system before t e s t i n g t h e c o n t r o l l e r proper. (1) (2) (3) (4) (5) Some s u g g e s t e d checks a r e : Open o r s h o r t e d s e n s o r and h e a t e r l e a d s , p a r t i c u l a r l y i n t h e v i c i n i t y o f t h e sample h o l d e r i f i t i s s u b j e c t t o f r e q u e n t dis-assembly. Leakage p a t h s between h e a t e r and s e n s o r l e a d s g i v i n g r i s e t o e l e c t r i c a l feedback i n a d d i t i o n t o thermal feedback. Premature loss of c r y o g e n i c f l u i d due t o thermal s h o r t s i n dewar, i c e blocks i n l i n e s , sample h o l d e r immersed i n cryogen, sample h o l d e r i n vapor whose t e m p e r a t u r e is above t h e c o n t r o l l e r s e t p o i n t temperature, e t c . Excessive thermal p a t h phase l a g s w i l l cause t h e c o n t r o l loop t o be u n s t a b l e a t high g a i n s e t t i n g s . P h y s i c a l s e p a r a t i o n between t h e diode and h e a t e r , p a r t i c u l a r l y by p a t h s o f small thermal c r o s s - s e c t i o n should be avoided. Examine h e a t e r element f u s e FU2. I f i t i s i n d i c a t e d t h a t t h e c o n t r o l l e r is m a l f u n c t i o n i n g a f t e r performing t h e t e s t s t o be d e s c r i b e d below, i t i s recommended t h a t t h e i n s t r u m e n t be r e t u r n e d t o t h e f a c t o r y f o r r e p a i r . The components used i n t h e i n s t r u m e n t a r e 29 c o s t l y and may b e permanently damaged i f s u b j e c t e d t o i n a p p r o p r i a t e t e s t v o l t a g e s o r e x c e s s i v e s o l d e r i n g i r o n h e a t . Although premium m a t e r i a l s and t e c h n i q u e s have been used t o f a b r i c a t e t h e instrument c i r c u i t b o a r d , t h e r e is always t h e r i s k of l i f t i n g a c o n n e c t i o n pad o r c r a c k i n g t h e board when u n s o l d e r i n g a component. 5.4 S e r v i c i n g P r i n t e d C i r c u i t Boards I t is suggested t h a t components be unsoldered f o r t r o u b l e s h o o t i n g only as a last r e s o r t s i n c e ample i n f o r m a t i o n i s a v a i l a b l e a t t h e numbered t e r m i n a l p i n s . Attempt t o i n f e r component c u r r e n t s by v o l t a g e t e s t s r a t h e r t h a n removing a l e a d and s e r i e s i n g i t w i t h an ammeter. A l l v o l t a g e s a r e a v a i l a b l e f o r measurement from t h e t o p s i d e o f t h e p r i n t e d c i r c u i t b o a r d , T h e r e f o r e , t h e board need o n l y be removed when it i s n e c e s s a r y t o r e p l a c e a component, To remove t h e p r i n t e d c i r c u i t b o a r d , unscrew t h e b o l t s from t h e bottom o f t h e case which attach t h e board t o t h e s t a n d - o f f s t u d s . Swing t h e r e a r of t h e board up, u s i n g t h e f r o n t edge as a p i v o t . Be s u r e t o c l e a r t h e l i n e cord r e t a i n e r and f u s e h o l d e r s . Be s u r e t o s u p p o r t t h e board i n t h e r a i s e d p o s i t i o n . If t h e board is s t r e s s e d , it may break o r develop h a i r l i n e cracks i n t h e printed wiring. Use a low h e a t (25 t o 50 watts) s m a l l - t i p , f r e s h l y t i n n e d s o l d e r i n g i r o n . Use small d i a m e t e r , r o s i n c o r e s o l d e r . Remove a component l e a d by a p p l y i n g heat t o t h e l e a d , o b s e r v i n g t h e s o l d e r melt and t h e n p u l l i n g t h e l e a d through t h e board from t h e t o p s i d e . Never a p p l y t e n s i o n t o p r i n t e d w i r i n g from t h e bottom s i d e . Thoroughly c l e a n a l l o f t h e o l d s o l d e r from t h e mounting h o l e b e f o r e i n s e r t i n g a new component w i t h t h e u s e of a wick o r d e s o l d e r i n g s u c t i o n d e v i c e . Shape t h e new component and i n s e r t i n mounting h o l e . Do n o t u s e h e a t o r f o r c e t o i n s e r t t h e new component. I f t h e l e a d s w i l l n o t go through t h e h o l e , f i l e t h e l e a d o r c l e a n t h e h o l e more thoroughly. Once mounted p r o p e r l y , apply h e a t t o l e a d and w i r i n g pad s i m u l t a n e o u s l y and r e s o l d e r . Clean excess f l u x from t h e connection and a d j o i n i n g a r e a w i t h warm water and weak d e t e r g e n t i f need be. (Contamination i n some areas o f t h e board can s e r i o u s l y degrade t h e h i g h i n p u t impedance o f t h e o p e r a t i o n a l a m p l i f i e r s .) 5.5 O p e r a t i o n a l Checks Replace t h e s e n s o r d i o d e c o n n e c t o r p l u g with a t e s t p l u g made up a c c o r d i n g t o Fig. 2 . 1 ( c ) . S u b s t i t u t e a p r e c i s i o n r e s i s t o r f o r t h e s e n s o r d i o d e i n t h e p l a c e a t e n watt, t e n ohm t e s t p l u g . Remove t h e h e a t e r element l e a d s r e s i s t o r across the heater output terminals. and Ten microamperes flowing through t h e test r e s i s t o r should develop a p o t e n t i a l o f 1.00 v o l t s a c r o s s a 100 K ohm r e s i s t o r , With t h e gain s e t a t maximum p o s i t i o n and t h e mode s e l e c t o r s w i t c h i n p o s i t i o n MAN A (assuming t h e t e s t p l u g is i n SENSOR A r e c e p t a c l e ) , a t t e m p t t o n u l l t h e e r r o r w i t h a s e t p o i n t v o l t a g e i n t h e v i c i n i t y o f 1.0 v o l t s . The n u l l meter should swing smoothly as t h e s e t p o i n t v o l t a g e v e r n i e r i s v a r i e d i n t h e v i c i n i t y of t h e n u l l . 30 W h i l e s t i l l i n t h e MAN A p o s i t i o n , s e t t h e MAXIMUM HEATER AMP switch a t 1 amp. Vary t h e MAN. RESET p o t e n t i o m e t e r from z e r o towards i t s maximum. T h e c u r r e n t meter should i n c r e a s e l i n e a r l y along with t h e advance o f t h e MAN RESET c o n t r o l . With t h e MAW RESET c o n t r o l s e t t o g i v e mid-scale h e a t e r c u r r e n t meter d e f l e c t i o n , r o t a t e t h e MAX HEATER AMP s w i t c h through a l l o f i t s p o s i t i o n s . The h e a t e r c u r r e n t meter i n d i c a t i o n should remain approximately a t mid-scale i n a l l of t h e p o s i t i o n s . Zero t h e n u l l meter with t h e s e t p o i n t v o l t a g e c o n t r o l s . Turn t h e S e t t h e MAX HEATER CUR. s w i t c h t o 1 amp. P o s i t i o n t h e mode c o n t r o l switch t o AUTO A . Abruptly r o t a t e t h e s e t p o i n t v o l t a g e v e r n i e r c o u n t e r clockwise s u f f i c i e n t l y t o cause a -10 u n i t d e f l e c t i o n o f t h e NULL meter. The h e a t e r c u r r e n t meter d e f l e c t i o n w i l l c o n s i s t of two components. The f i r s t i s a r a p i d s t e p r i s e due t o t h e s t e a d y n u l l e r r o r and a second, g r a d u a l l y r i s i n g component due t o t h e AUTO RESET c i r c u i t i n t e g r a t i n g t h e s t e a d y e r r o r . The h e a t e r c u r r e n t meter will g r a d u a l l y rise towards f u l l s c a l e d e f l e c t i o n . The r a t e a t which t h e h e a t e r c u r r e n t rises i s determined by t h e AUTO RESET time c o n s t a n t s e t t i n g . The r a t e i s a minimum i n t h e counterclockwise p o s i t i o n and a maximum i n t h e f u l l y clockwise p o s i t i o n . AUTO RESET and GAIN c o n t r o l s t o mid-scale p o s i t i o n . Abruptly r o t a t e t h e s e t p o i n t v o l t a g e v e r n i e r clockwise t o cause +10 u n i t s d e f l e c t i o n o f t h e NULL meter. The HEATER CURRENT meter should gradu a l l y d e c r e a s e from f u l l s c a l e d e f l e c t i o n t o zero. The r a t e a t which t h e c u r r e n t meter goes t o zero i s i n p a r t determined by t h e bounding c i r c u i t . I t s n o n - l i n e a r b e h a v i o r accounts f o r t h e asymetry i n t h e temperature v e r s u s time c h a r a c t e r i s t i c s as shown i n Fig. 3.4. I f t h e i n s t r u m e n t responds t o t h e t e s t s o u t l i n e d above as i n d i c a t e d , e i t h e r t h e t r o u b l e l i e s elsewhere i n t h e system o r t h e malfunction i n t h e c o n t r o l l e r i s o f a s u b t l e n a t u r e . A s an a i d i n t r o u b l e s h o o t i n g i n t h e l a t t e r case, t y p i c a l v o l t a g e s and g a i n s under s p e c i f i e d c o n d i t i o n s a r e given i n Section 5.6. 5.6 Nominal Voltages and Gains The following v o l t a g e measurements were made with an RCA S e n i o r Voltohmist meter. A 1%, 75K r e s i s t o r was used t o s i m u l a t e t h e diode and a 10 ohm, 10 w a t t r e s i s t o r was used i n p l a c e o f a h e a t e r element. The v o l t a g e a c r o s s t h e i n p u t f i l t e r c a p a c i t o r s C 1 , C 4 , C7, C10 and C13 i n power s u p p l i e s PS-1 through PS-5 nominally 24 v o l t s with nominal l i n e v o l t a g e . The output v o l t a g e which appears between t e r m i n a l s 3 and 7 o f t h e uA723 i n t e g r a t e d c i r c u i t s i s 15 v o l t s . The sampling r e s i s t o r s a r e p r o p o r t i o n a l s o t h a t t h e p o t e n t i a l between p i n 4 and p i n 7 i s approximately 7 v o l t s . Reference diodes CR-37 and CR-13 a r e r e v e r s e b i a s e d a t 6.4 v o l t s . The v o l t a g e appearing a c r o s s c a p a c i t o r C16 i n PS-6 v a r i e s between approximately 1 4 and 20 v o l t s , depending upon t h e h e a t e r element c u r r e n t . A t no l o a d t h e v o l t a g e i s 20 v o l t s , d e c r e a s i n g t o 1 4 v o l t s a t 1 ampere o u t p u t . 31 The emitter o f Q 1 is b i a s e d t o +0.5V t o compensate f o r t h e t u r n on v o l t a g e o f Q1. The o u t p u t power a m p l i f i e r s t a g e may be checked by p l a c i n g t h e mode s e l e c t o r s w i t c h i n t h e MAN A p o s i t i o n . The p o t e n t i a l a c r o s s R54 ( t e r m i n a l s 6 t o 7) i s 3.4 v o l t s . The v o l t a g e a t t e r m i n a l 20 should he approximately 3.5 times t h e v o l t a g e s e l e c t e d between t h e s l i d e r o f R51 and ground. The v o l t a g e a t t h e o u t p u t o f a m p l i f i e r A 4 i s about one v o l t more n e g a t i v e t h a n t h e v o l t a g e a t t e r m i n a l 20 because o f t h e base e m i t t e r drops o f Q3 and 44. With t h e AUTO RESET c o n t r o l i n t h e o f f p o s i t i o n ( i n t h e switch d e t e n t ) and t h e MAX HEATER CUR s w i t c h i n t h e 1 amp. p o s i t i o n , t h e t o t a l v o l t a g e g a i n o f a m p l i f i e r s A3 and A4 may be i n f e r r e d . The CURRENT METER corresponds t o a 10 v o l t f u l l scale v o l t m e t e r i f a 10 ohm h e a t e r element i s used. Comparison o f t h e incremental output v o l t a g e change t o t h e corresponding incremental NULL meter e r r o r change w i l l y i e l d t h e gain. The nominal cascade g a i n of t h e last two s t a g e s i s 40. Gain checks should be performed by f i r s t z e r o i n g t h e NULL meter w i t h t h e SET POINT VOLTAGE VERNIER. A small v o l t a g e change i s made i n t h e v e r n i e r d i a l s e t t i n g and t h e r e s u l t i n g changes i n t h e NULL meter and CURRENT meters observed. 5.7 C a l i b r a t i o n o f S e t Point Voltage The instrument has been c a r e f u l l y c a l i b r a t e d t o w i t h i n 100 mV and r e s i d u a l b a s e l i n e r e s i s t a n c e o f t h e 10 t u r n p o t e n t i o m e t e r R28. Should i t b e d e s i r a b l e t o check o r r e c a l i b r a t e t h e s e t p o i n t r e f e r e n c e v o l t a g e , t h e s e n s o r should be d i s c o n n e c t e d and t h e "TEMPERATURE SET POINT" switch on t h e back p a n e l be i n t h e "INTERNAL" p o s i t i o n . The r e f e r e n c e v o l t a g e may be measured a c r o s s p i n s E-D o f t h e s e n s o r connectors J1 o r J 2 without opening t h e core. Voltage measurements s h o u l d be t a k e n with a high p r e c i s i o n p o t e n t i o m e t r i c i n s t r u m e n t . I f r e c a l i b r a t i o n i s i n d i c a t e d , a f t e r allowing a minimum o f 20 minutes warm-up t i m e , remove t h e cover and a d j u s t trimmer R33 s o t h e v o l t a g e between t e r m i n a l p i n s 5 and 3 should be w i t h i n 3.0000 ±100 uV. 5.8 C a l i b r a t i o n of Sensor Current The s e n s o r c u r r e n t has been f a c t o r y c a l i b r a t e d t o 10 microamperes ± 1 0 nanoamperes. To check t h e s e n s o r c u r r e n t without removing t h e case cover, a c o n v e n i e n t l y a v a i l a b l e p r e c i s i o n r e s i s t a n c e of not l e s s t h a n .01% t o l e r a n c e should b e connected t o p i n s A-B of t h e s e n s o r connector s o c k e t ( J 1 o r J 2 ) , and t h e s e n s o r s e l e c t o r switch on t h e f r o n t p a n e l switched t o t h e a p p r o p r i a t e s e n s o r i n p u t ( A o r B). The "TEMPERATURE SET POINT" s w i t c h on t h e r e a r p a n e l should be switched t o "REMOTE". A high q u a l i t y p o t e n t i o m e t r i c v o l t m e t e r connected t o t h e p r e c i s i o n r e s i s t o r should measure a v o l t a g e e q u a l t o 10 microamperes times t h e v a l u e o f t h e r e s i s t o r . T y p i c a l l y , a 100K ±.01% r e s i s t o r should read 1.0000 w i t h i n 100 microv o l t s . I f r e c a l i b r a t i o n is i n d i c a t e d , t h e v o l t a g e drop a c r o s s t h e p r e c i s i o n r e s i s t o r s can b e measured, a f t e r removing t h e c a s e cover and a d j u s t i n g trimmer R23 on t h e c i r c u i t board. 32 5.9 Parts List, Component L o c a t i o n Diagram and S c h e m a t i c Table 5.1 PARTS LIST R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 R26 R27 R28 R29 R30 R31 R32 R33 R34 R34A R35 R36 R37 R38 R39 R40 R41 R42 3.6K 1/4W 10% 6 . 2 ohms 1/4W 5% 8.2K 1/8W 1% 7.5K 1/8W 1% 3.6K 1/4W 10% 6 . 2 ohms 1/4W 5% 8.2K 1/8W 1% 7.5K 1/8W 1% 3.6K 1/4W 10% 1/4W 5% 6 . 2 ohms 8.2K 1/8W 1% 7.5K 1/8W 1% 1.24K 1/8W 1% 3.6K 1/4w 10% 5% 6.2 ohms 1/4W 1/8W 1% 8.2K 7.5K 1/8N 1% 3.6K 1/4W 10% 6 . 2 ohms 1/4W 5% 8.2K 1/8W 1% 7.5K 1/8W 1% 7.5K 1/8W 1% 5K TRIMPOT, HELIPOT 58PR5000 30.9K 1/8W 1% 1/8W 1% 50K 499K 1/8W .1% 100K 1/4W 5% 100 ohms 1 0 TURN POT. HELIPOT 7226 TRIM RESISTOR 3.48K 1/8W 1% 4 70 1/8W 1% 100K 1/4W 5% 10 TRIMPOT, HELIPOT 78PR10 5 79 1% 1/4W (NOMINAL) (NOMINAL) (NOMINAL) (NOMINAL) (NOMINAL) (NOMINAL) (NOMINAL) (NOMINAL) 22 MEG 1/4W 560 1/4W 10K POTENTIOMETER 100 1/8W 100 1/4W 10K 1/4W 20K 1/4W 5% 5% ( G A I N CONTROL) 1% 5% 5% 5% (NOMINAL) 33 R43 R44 R45 R46 R47 R48 (NOMINAL) R50 R51 R52 R53 R54 R55 R56 R57 R58 R59 R60 R61 R62 R63 R64 R65 470 1/4W 330K 1/4W 8.65K 1/8W 18K 1/4W 100K 1/4W 1.5K 1/4W 12K 1/4W 33K 1/4W 680K 1/4W 1/4W 2 . 7 PEG 1 K TEN TURN POT 3.83K 1/8W 2.7K 1/4W 1 MEG 1/4W 1.2K 1/4W 1 MEG POT 1K 1/4W 10K 1/4W 16.2K 1/4W 50K 1/8W 12K 1/4W 56K 1/4W R101-104 R105-106 R107-117 17.61 1/8W TRIMMING RESISTORS 45.7 1/8W R200 R201 R202 R203 R204 R205 R206 R207 R208 R209 430 54.9 16.9 5.0 1.65 4.995 1000 324 90 23.33 R49 1/8W 1/4W 1/8W 1/8W 1/2W 1W 1/4W 1/2W 2W 5W 5% 5% 1% 5% 5% 5% 5% 5% 5% 5% (MANUAL RESET) 1% 5% 5% 5% (AUTO RESET CONTROL) 5% 5% 1% 1% 5% 5% .05% .05% 1% 1% 1% 1% 1% 1% 1% 1% 1% 1% (NOMINAL) SET POINT VOLTAGE D I V I D E R ASSEMBLY HEATER CURRENT RANGE AND METER SWITCH ASSEMBLY 34 c1 c2 c3 c4 c5 C6 c7 C8 C9 c10 c11 c12 C13 C14 c15 C16 C17 C18 C19 c20 c21 c22 220 MFD, 6 3 VDC, E l e c t r o l y t i c 31 pf: Mica DM10 OPTIONAL 25 MFD, 25 VDC, E l e c t r o l y t i c 220 MFD, 63 VDC, E l e c t r o l y t i c 91 pF Mica DM10 OPTIONAL 25 MFD, 25 VDC, E l e c t r o l y t i c 220 MFD, 63 VDC, E l e c t r o l y t i c 9 1 pF M i ca DM10 OPTIONAL 25 MFD, 25 VDC, E l e c t r o l y t i c 220 MFD, 6 3 VDC, E l e c t r o l y t i c 9 1 pF Mica DM10 OPTIONAL 25 MFD, 25 VDC, E l e c t r o l y t i c 220 NFD, 63 VDC, E l e c t r o l y t i c 9 1 pF Mica DM10 OPTIONAL 25 MFD, 25 VDC, E l e c t r o l y t i c 2500 MFD, 25 VDC, E l e c t r o l y t i c . 2 2 MFD, 100 VDC, Mylar . 6 8 MFD, 50 VDC, Mylar . 2 2 MFD, 50 VDC, M y l a r 100 MFD, 15 VDC, T a n t a l u m 470 pF, 100 VDC, Mica . 0 1 MFD, 50 VDC, Mylar CR1-12 CR13 CR14-21 CR22 CR23 CR24 CR25 CR26 CR27 CR28 CR29 CR30 CR31 CR32 CR33 CR34 CR35 CR36 CR37 S I L I C O N RECTI F I ER REFERENCE DIODE SILICON RECTIFIER SILICON RECTIFIER SILICON R E C T I F I E R S I L I C O N PROTECTION DIODE S I L I C O N PROTECTION DIODE S I L I C O N DIODE S I L I C O N DIODE 10 V. REFERENCE DIODE 10 V. REFERENCE DIODE S I L I C O N DIODE 3.9 v. S I L I C O N DIODE S I L I C O N DIODE S I L I C O N DIODE A1 A2 A3 A4 OPERATIONAL OPERATIONAL OPERATIONAL OPERATIONAL REFERENCE DIODE AMPLIFIER AMP L I F I E R AMPLIFIER AMP L I F I E R IN4002 IN4571A IN4002 IN1612 IN1612 411 411 411 411 IN961 IN961 411 DZ 7011 411 IN841 411 IN358 IN358 IN4571A 5825 5823 5825 5824 35 REG., REG., REG., REG., REG., 6W7723393 6W7723393 6W7723393 6W7723393 6W7728393 M1 M2 M3 M4 M5 VOLT. VOLT. VOLT. VOLT. VOLT. Q1 Q2 Q3 Q4 2N3638 2N5459 2N4234 2N4901 S1 S2 S3 S4 S5 S6 S7 MODE SELECTOR SWITCH S E T P O I N T SWITCH ASSEMBLY PART O F POTENTIOMETER R 5 5 HEATER CURRENT METERING SW. ASSEMBLY POWER SW., A.H. & H. 8 1 0 2 4 - G B L I N E VOLTAGE SELECTOR SWITCH, SWITCHCRAFT 4 6 2 5 6 L F TEMP. S E T P O I N T SELECTOR SWITCH, SWITCHCRAFT 4 6 2 0 6 L FU1 FU2 FUSE HOLDER, L I T T L E F U S E 342004 FUSE HOLDER, L I T T L E F U S E 342004 HS1 HS2 HS3 HEATSINK, WAKEFIELD ENG., MODEL 6 9 0 - 3 - B A HEATSINK ( C R 6 ) , WAKEFIELD ENG., MODEL 6 9 5 - B HEATSINK ( C R 7 ) , WAKEFIELD ENG. , MODEL 6 9 5 - B J1 J2 J3 J4 J5 J6 5 P I N SENSOR SOCKET, AMPHENOL 126-218 5 P I N SENSOR SOCKET, AMPHENOL 126-218 7 P I N REMOTE S E T P O I N T , AMPHENOL 126-198 HEATER B I N D I N G P O S T , E . F . JOHNSON, 111-0113-001 HEATER B I N D I N G P O S T , E . F. JOHNSON, 111-0103-001 C H A S S I S GROUND P O S T , E . F . JOHNSON, 111-0103-001 F E T TRANSISTOR 36 T1 POWER TRANS FORMER PL1 P I L O T L I G H T ASSEMBLY, I N D U S T R I A L DEVICES 1040A87 MT1 MT2 NULL METER -100-0-100 uAmp. CURRENT METER 0-1 Milliamp. DL1 DL2 10 TURN D I A L FOR R28, H E L I P O T 10 TURN D I A L FOR R 5 4 , H E L I P O T T-25-29 2607 2607 37 38. 39.